Kovalisko, Branko

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Split / Sveučilište u Splitu**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:176:250840

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-31

Repository / Repozitorij:

Sveučilišni odjel zdravstvenih studija sveučilište u splitu

Repository of the University Department for Health Studies, University of Split

SVEUČILIŠTE U SPLITU Podružnica SVEUČILIŠNI ODJEL ZDRAVSTVENIH STUDIJA SVEUČILIŠNI DIPLOMSKI STUDIJ RADIOLOŠKA TEHNOLOGIJA

BRANKO KOVALISKO

Validacija sive skale na C-luku u korelaciji s HU na CT-u

Diplomski rad

Split, 2024.

SVEUČILIŠTE U SPLITU Podružnica SVEUČILIŠNI ODJEL ZDRAVSTVENIH STUDIJA SVEUČILIŠNI DIPLOMSKI STUDIJ RADIOLOŠKE TEHNOLOGIJE

BRANKO KOVALISKO

Validacija sive skale na C-luku u korelaciji s HU na CT-u Validation of gray scale on C-arm in correlation with HU on the CT

Diplomski rad / Master's Thesis

Mentor:

izv. prof. dr. sc. Frane Mihanović

Split, 2024.

TEMELJNA DOKUMENTACIJSKA KARTICA

DIPLOMSKI RAD

Sveučilište u Splitu Sveučilišni odjel zdravstvenih studija Sveučilišni diplomski studij radiološke tehnologije

Znanstveno područje: Biomedicina i zdravstvo Znanstveno polje: Kliničke medicinske znanosti

Mentor: izv. prof. dr. sc. Frane Mihanović

Validacija sive skale na C-luku u korelaciji s HU na CT-u Branko Kovalisko, 1003005017

SAŽETAK

Uvod: Kod CT snimanja, Hounsfieldova jedinica (HU) proporcionalna je stupnju slabljenja rendgenskih zraka u tkivu. Kod radiografskog uređaja (3D C-luk), stupanj atenuacije rendgenskih zraka prikazan je nijansama sive skale (GSV). Dokazivanje korelacije između HU i GSV omogućilo bi širu i lakšu primjenu radiografskog prikaza u područjima izvan područja biomedicine i zdravstva te primjenu kvantitativnih metoda istraživanja. **Cili:** Svrha ovog istraživanja bila je istražiti odnos između GSV-a na C-luku i HU na CT uređaju.

Metode: U ovom istraživanju je CT fantom snimljen s C-lukom i CT-om. Na dobivenim DICOM slikama izračunati su meta podatci GSV na C-luku i HU na CT-u. Dobiveni podatci analizirani su u statističkom programu kako bi se istražio odnos između GSV i HU.

Rezultati: Rezultati dobiveni obradom podataka pomoću statističkog programa MedCalc Statistical Software pokazuju da izmjerena i prikazana vrijednost koeficijenta korelacije (r) r=0,185 između C luka 115 kV i CT-a 110 kV opisuje se kao r = neznatna i pozitivna. Slaba i pozitivna korelacija (r = 0,450) izmjerena je i prikazana između CT-a i C-luka sa snagom cijevi na oba uređaja od 80 kV. Slaba i pozitivna korelacija (r = 0,434) dobivena je mjerenjem između CT-a 110 kV i C luka 80 kV.

Zaključak: Nakon dobivenih rezultata iz ovog istraživanja i pregledom dostupne literature može se reći da postoji veza između GSV na C-luku i HU na CT-u. Rezultati ovog istraživanja nedovoljni su da bi se upotrijebili u validaciji sive skale na C-luku i HU na CT-u.

Ključne riječi: Cluk; CT fantom; Hounsfieldove jedinice; koeficijent korelacije; siva skala

Rad sadrži: 44 stranica; 25 slika; 6 tablica;28 literaturnih referenci Jezik izvornika: hrvatski

BASIC DOCUMENTATION CARD

MASTER THESIS

University of Split University Department for Health Studies University graduate study of Radiological technology

Scientific area: Biomedicine and health care Scientific field: Clinical medical sciences

Supervisor: Frane Mihanović, PhD, assoc. prof.

Validation of gray scale on the C-arm in correlation with HU on the CT Branko Kovalisko, 1003005017

SUMMARY

Introduction: In CT imaging, the Hounsfield unit (HU) is proportional to the degree of X-ray attenuation in tissue. In a radiographic device (3D C-arm), the degree of X-ray attenuation is represented by shades of gray (Gray Scale Value - GSV). Demonstrating a correlation between HU and GSV would enable broader and easier use of radiographic imaging in fields beyond biomedicine and healthcare, as well as the application of quantitative research methods.

Objective: The purpose of this study was to investigate the relationship between GSV on a C-arm and HU on a CT scanner.

Methods: In this study, a CT phantom was scanned with both a C-arm and a CT scanner. The meta-data from the resulting DICOM images were used to calculate the GSV values on the C-arm and HU values on the CT scanner. The data obtained were analyzed using statistical software to explore the relationship between GSV and HU.

Results: The results obtained using the MedCalc Statistical Software show that the measured and displayed correlation coefficient (r) of r = 0.185 between the C-arm at 115 kV and the CT scanner at 110 kV is described as insignificant and positive. A weak positive correlation (r = 0.450) was measured and displayed between the CT scanner and the C-arm with the tube power of both devices set to 80 kV. A weak positive correlation (r = 0.434) was obtained from the measurements between the CT scanner at 110 kV and the C-arm at 80 kV.

Conclusion: Based on the results of this study and the review of available literature, it can be concluded that there is a relationship between GSV on the C-arm and HU on the CT scanner. However, the results of this study are insufficient to validate the gray scale on the C-arm in relation to HU on the CT scanner.

Keywords: C arm; CT phantom; Hounsfield units; Correlation coefficient; gray scale

Thesis contains: 44 pages; 25 figures; 6 tables; 28 references **Original in:** Croatian

SADRŽAJ

TEMELJNA DOKUMENTACIJSKA KARTICAI
BASIC DOCUMENTATION CARDII
SADRŽAJ III
1. UVOD 1
1.1 KOMPJUTORIZIRANA TOMOGRAFIJA (CT)
1.1.1 Tehnološke karakteristike CT uređaja 4
1.2 C-LUK 5
1.2.1 CCD u odnosu na CMOS 5
1.2.2 Tehnološke karakteristike C-luka
1.3 PIKSEL
1.4 BIT
1.5 DUBINA BITA
1.6 MATRICA SLIKE 10
1.7 HOUNSFIELDOV BROJ (HU) 11
2. CILJ RADA 12
3. ISPITANICI I METODE 13
3.1 MATERIJAL I METODE
3.1.1 Fantom
3.1.2 C-luk i nosač fantoma
3.1.3 CT uređaj 17
3.2 METODE RADA 17
3.2.1 Karakteristike slike iz DICOM datoteke

3	5.3 S	TATISTIČKA OBRADA REZULTATA	. 25
	3.3.1	Koeficijent korelacije	. 25
4.	REZU	LTATI	. 26
5.	RASP	RAVA	. 33
6.	ZAKL	JUČAK	. 36
7.	LITEF	RATURA	. 37
8.	ŽIVO	TOPIS	. 40

1. UVOD

Razvoj tehnologije u svijetu u zadnja tri desetljeća utjecalo je i na razvoj, napredovanje i primjenu medicinskih uređaja poglavito dijagnostičkih rendgenskih uređaja. Sama primjena rtg uređaja nije samo ograničena na primjenu u zdravstvu već svoju svrhu radiološki prikaz nalazi izvan medicine. Uporaba radioloških prikaza sve više nalazi primjenu i u forenzici. Objekti koji se snimaju nisu uvijek u mogućnosti transportirati se u zdravstvenu ustanovu ili u ustanovu gdje se nalazi radiološki uređaji. Nekad je potrebno izvršiti radiološko snimanje i na terenu izvan zdravstvene ustanove. Uređaji kojima se snimaju zadani objekti nekada zbog svoje težine i veličine nisu adekvatni za transport na zahtjevnim terenima. Korištenjem radioloških uređaja koji stvaraju sliku u prikazu sive skale manje su tehnički zahtjevni te lakši za korištenje. Dokazivanjem korelacije između Hounsfieldovih jedinica, HU (engl. *Hounsfield Unit*) i nijansi sive skale, GSV (engl. *Gray Scale Value*) omogućilo bi širu i lakšu primjenu radiografskog prikaza u područjima izvan područja biomedicine i zdravstva te primjenu kvantitativnih metoda istraživanja.

Atenuacija rtg zračenja kroz različite materijale stvara sliku koju se može interpretirati na osnovi poznatih vrijednosti HU i vrijednosti GSV-a. Kod kompjuterizirana tomografija, CT (engl. *Computed Tomography*) CT snimanja,HU proporcionalna je stupnju slabljenja rendgenskih zraka i dodjeljuje se svakom pikselu kako bi prikazala sliku koja predstavlja gustoću tkiva. U radiografskom snimanju (3D/C-luk), stupanj slabljenja rendgenskih zraka prikazan je sivom skalom [1]. Slikovni isječak, presjek se generira računalnom rekonstrukcijom, a nijanse sive skale ovise o atenuaciji zračenja prolaskom kroz snimljeni dio tijela ili objekta.

Stvaranje slike u digitalnoj radiografiji temelji se na pretvaranju analogne informacije u informaciju koju prepoznaje računalo te je kao sliku vidimo na monitoru. Digitalne metode oslikavanja ne nastaju izravnim djelovanjem rendgenskih zraka na receptor slike, već digitalnom obradom ulaznih analognih dijagnostičkih informacija na samom receptoru slike preko analogno digitalnog pretvarača, ADC (engl. *Analog Digital Converter*) koji ih pretvara u digitalne podatke, a nakon kompjutorske obrade uz pomoć različitih matematičkih

algoritama, podaci se prikazuju na ekranu računala u obliku slike sastavljene od niza piksela poredanih u redove i stupce. Pikseli su sastavni dio digitalne bitmape – matriksa s informacijom o dubini bita tj. nijansama sive skale proporcionalno atenuciji zračenja ovisno o anatomskoj strukturi kroz koje prolaze fotoni zračenja [2].

Digitalna slika ima niz prednosti uključujući veliku dinamičku širinu (raspon kontrasta, nijanse sive skale), smanjenje doze zračenja, jednostavnije pohranjivanje i brzu razmjenu slika između klinika i odjela [3].

Usporednim mjerenjem HU i GSV na CT fantomu skeniranim s CT uređajem i 3D Clukom, prikazani su rezultati i pomoću tih rezultata dokazati ima li korelacije između HU i GSV.

Istraživači su u objavljenim radovima istraživali korelaciju između vrijednosti sive skale na uređaju kompjuterizirane tomografije konusnim zrakama, CBCT (engl. *Cone Beam Computed Tomography*) i HU na CT-u. Selvaraj A. i suradnici su sustavnim pregledom i meta analizom istraživali korelaciju između GSV CBCT-a i HU CT-a za procjenu mineralne gustoće kostiju. Zaključak njihovog rada je da su dostupnim dokazima pokazali pozitivnu korelaciju između GSV CBCT-a i HU CT-a [4].

Eguren M. i suradnici su u svom radu pregledavajući literaturu željeli odgovoriti na pitanje "Mogu li se vrijednosti GSV pretvoriti u HU ?" U zaključku su naveli da je sustavni pregled pokazao da se GSV iz CBCT-a ne mogu pretvoriti u HU do CT-a zbog nedostatka kliničkih studija s dijagnostičkim kapacitetom koji bi poduprli njegovu upotrebu [5].

U studiji Razi T. i suradnici su skenirali glavu ovce na tri CBCT i jednom CT uređajem te su rekonstruirane podatke analizirali kako bi istražili odnos između sive skale kod CBCTa i HU. Zaključak istraživanja pokazuje jaku korelacija između sivih skala CBCT-a i HU-a CT-a [1].

Ideja tj. istraživanje koje je provedeno, učinjeno je zbog toga što pretraživanjem literature u PubMed-u i Google Scholar, nema poznatih studija koje istražuju korelaciju HU na CT-u i GSV na C-luku.

1.1 KOMPJUTORIZIRANA TOMOGRAFIJA (CT)

CT je digitalna metoda slojevitog rendgenskog snimanja. Prvi CT sustav 1971 g. izradili su Sir Godfrey Newbold Hounsfield i Allan McLeod Cromack. Na temelju svoga rada 1979. godine Allan M.Cormack i Godfrey N. Hounsfield dobili su Nobelovu nagradu za medicinu i fiziologiju "za otkriće kompjuterski asistirane tomografije, revolucionarne radiološke metode osobito u istraživanju bolesti nervnog sistema"[6].

Razvoj CT uređaja je podijeljen u 4 generacije. Svaka generacija razvoja uređaja donijela je kraće vrijeme skeniranja, poboljšanu kontrastnu i prostornu rezoluciju. Uvođenjem spiralnog CT-a napuštena je podjela uređaja po generacijama. Prvi spiralni CT uređaj pojavljuje se 1990. godine. Današnji spiralni CT uređaji vrše kontinuiranu rotaciju rendgenske cijevi i detektora oko snimanog objekta, koji se na stolu uređaja automatski linearno pomiče kroz snop zračenja prilikom ekspozicije [7].

CT se temelji na atenuaciji rtg zraka kroz snimano područje od interesa. Nakon što zrake prođu kroz tkiva različite gustoće, atenuirano zračenje dolazi na detektore koji ga pretvaraju u električne signale proporcionalne atenuaciji snimanog objekta. Matematičkim algoritmima izračunava se vrijednost atenuacije snimljenog sloja. Izračunate apsorbirane vrijednosti pretvaraju se u sivu skalu te se prikaže slika snimanog objekta na monitoru. Apsorpcijske vrijednosti relativne gustoće struktura na CT-u izražavaju se u HU [8].

Daljnjim razvojem CT uređaja koji sada koristi više redova detektora za dobivanje informacija o snimanom objektu naziva se više detektorska kompjutorizirana tomografija, MDCT (engl. *Multidetector Computed Tomography*) ili višeslojna kompjuterizirana tomografija, MSCT (eng. *Multislice Computed Tomography*). MDCT koristi više redova detektora za generiranje većeg broja slojeva po jednoj rotaciji. To je omogućilo snimanje većeg dijela tijela u manjem vremenskom periodu , sukladno tome utječe i na dozu zračenja pacijenta [9]. Osnovna značajka rada MDCT/MSCT uređaja je dobivanje podataka iz volumena snimanog dijela tijela ili objekta pri jednoj rotaciji rendgenske cijevi. Prvi CT uređaj imao je samo jedan detektor dok današnji CT uređaji imaju i preko 2000 i više detektora u nekoliko redova. Broj detektora po dužnom centimetru detektorskog luka utječe na prostornu rezoluciju MDCT uređaja. Detektori mjere intenzitet oslabljenog zračenja koje

prošlo kroz tijelo. Dvije osnovne vrste detektora koji se koriste u CT-u su scintilacijski (u čvrstom stanju) i ionizacijski plinski detektori. Scintilacijskim detektorima potrebna je manja doza zračenja zbog svoje osjetljivosti na rendgensko zračenje, niži napon te su osjetljivi na temperaturne promjene. Plinski detektori rade na principu ionizacije, za njihov rad potreban im je visok napon i imaju slabiju sposobnost detekcije rendgenskog zračenja. Detektori (scintilacijski ili plinski) rade po principu scintilacije. Količina apsorbirane energije rendgenskog zračenja proporcionalna je količini emitiranog svjetla [9].

S uvođenjem spiralnog snimanja, posebno s brojem redova detektora od 16 ili većim, omogućio se prikaz 3D slike. Pomoću softverskih alata ili opcija omogućeno je pregledavati dobivene slike u više ravnina (na primjer, sagitalne i koronarne), kontrastnog prikaza krvnih žila, prikaz plućnog intersticija, virtualne endoskopske pretrage i sl. Ako su uređaji visoke prostorne i kontrastne rezolucije dobivene slike imaju visoku dijagnostičku pouzdanost. Kolimator je bitan dio CT uređaja jer mora osigurati uski, monokromatski snop zračenja usmjeren na dio snimanog dijela tijela ili objekta.

Prostorna rezolucija, SR (eng. *Spatial Resolution*) je karakteristika uređaja da razdvoji dvije točke na objektu koje su jedna do druge. Broj i veličina piksela SR koja omogućuje sposobnost razlikovanja malih struktura na slici. SR izražava se u linijskim parovima po milimetru (lp/mm) i veličinom akvizicijskog piksela Za uređaj koji može prikazati dvije točke kao odvojene na manjoj udaljenosti možemo reći kako taj uređaj ima bolju SR [10]. Kontrastna rezolucija u radiologiji definira sposobnost razlikovanja prikaza razlike u intenzitetu slike. Kontrastnost slike ovisi o više parametara npr. ekspoziciji, dinamičkoj širini detektora, dubini bita slike i softverskim opcijama.

1.1.1 Tehnološke karakteristike CT uređaja

MSCT uređaj koji je korišten u istraživanju je Siemens Somatom Perspective, Erlangen, Germany. CT uređaj ima matricu slike od 512 x 512 piksela, 64 sloja, UFC (Ultra Fast Ceramics) detektori, širina detektora u z osi je 38,4 mm, ukupno 47 104 detektorska elementa. Debljina sloja snimanja je od 0,6 mm do 20 mm, prostorna rezolucija 17.5 lp/mm, 12 bitna razlučivost razina nijansi sive skale, vrijeme rekonstrukcije slike je do 20 slika /sec, real time slika lokalizacije prilikom skeniranja [11].

1.2 C-LUK

C-luk je mobilni fluoroskopski uređaj koji koristi fiksni sustav rtg cijevi i detektora postavljen na nosaču u obliku slova C. Uređaj je konstruiran na način da vertikalnim, horizontalnim i orbitalnim pomacima može pristupiti snimanom objektu sa više strana. Uređaj se najviše koristi u operacijskim salama zbog rendgenskog snimanja u stvarnom vremenu tijekom zahvata, zbog svoje mobilnosti i mogućnosti pristupa snimanom dijelu tijela bez pomicanja pacijenta [12].

U današnje vrijeme napretkom tehnologije C-luk uređaji za dobivanje i prikaz slike na monitoru koriste ravne detektore koju su temeljeni na nabojno spregnutim uređajima, CCD (engl. *Charge Coupled Device*) i komplementarni metal oksidni poluvodič, CMOS (engl. *Complementary Metal Oxide Semiconductor*) tehnologiji.

Prikaz slike C-luku temelji se na atenuaciji rendgenskog zračenja kroz snimani objekt ili dio tijela. Rendgenske zrake prolaskom kroz tijelo padaju na detektor pomoću kojeg se pretvaraju u sliku koja se na monitoru prikazuje kao razina sive skale [7].

1.2.1 CCD u odnosu na CMOS

CCD i CMOS su senzori koji pretvaraju fotone rendgenskog zračenja u električne signale i na kraju uz pomoć analognog digitalnog konvertera u digitalne signale. Energija rendgenskih zraka prolaskom kroz tijelo pacijenta pada na kristale scintilatora (cezijev jodid) i pretvaraju se u svjetlost. Fotone svjetla bilježi CCD detektor i tu svjetlost putem tranzistora prevodi u binarni kod koji se na monitoru prikazuje kao slika u nijansama sive skale.

CCD senzor hvata cijelu sliku odjednom te rastavlja elemente slike u piksele gdje se svaki piksel pretvara u električni naboj. Sastoji se od niza kondenzatora, od kojih svaki nosi električni naboj čiji je intenzitet povezan s intenzitetom svjetlosti koji uhvati taj piksel. Upravljački krug omogućava da svaki kondenzator prenese svoj sadržaj susjednom kondenzatoru koji je u liniji, a posljednji kondenzator u nizu prenosi svoj naboj u pojačalo naboja [13]. To se naziva "vatrogasni lanac" (engl. *Bucket-brigade*), način prijenosa koji je karakterističan za CCD senzore. Podaci se zatim digitaliziraju kako bi se dobila vrijednost u sivim nijansama za svaki odgovarajući piksel. U CCD-u obično postoji samo jedno pojačalo na kraju svakog stupca matrice (Slika 1) [14].

Vertical Charge Transfer

Izvor:https://www.e-consystems.com/blog/camera/wp-content/uploads/2022/01/Charge-transfer-

process-in-CCD-sensors.jpg

U CMOS senzoru svaka fotodioda ima povezano pojačalo i digitalizator u integriranom formatu čipa koje očitava količinu akumuliranog naboja, a zabilježeni signal iz niza pojačala izlazi paralelno (Slika 2) [14]. Pojedinačna pojačala povezana sa svakim fotosenzorom silicijske diode (nazvana pikselom) pomaže u smanjenju razine šuma i izobličenja slike [13]. Ta tehnologija omogućila je manju potrošnju energije, bržu obradu slike i dobivanje šireg raspona sive skale.

Razlika između CCD i CMOS tehnika leži u navedenom načinu prijenosa elektroničkog signala u svakom pikselu. Kako CMOS senzori u svakom pikselu sadrže pojačalo i analogno digitalni konverter što rezultira većim šumom u usporedbi s CCD senzorom koji su povijesno proizvodili oštrije slike s manje šuma zbog analognog procesa prijenosa naboja [15]. Opisane općenite karakteristike CCD-a bi bile odlična prostorna rezolucija te dobar omjer signala i šuma, dok je za CMOS karakteristično veća brzina očitavanja snimke, mala potrošnja energije, niži radni napon, funkcionalnost na čipu i značajno niža cijena proizvodnje [16]. CCD senzor nudi bolju kvalitetu slike, prvenstveno za digitalne aplikacije te je u usporedbi sa CMOS senzorom slike bolji što se tiče odnosa signala, šuma te dinamičkog raspona (omjer signala zasićenja i efektivne vrijednosti šuma senzora).

Zahvaljujući nižoj cijeni proizvodnje CMOS senzora slike, otvorila su se nova područja primjene slikovnih ili vizualnih sustava u medicini (radiologija), svemiru, 3D potrošačka elektronika, automobilska industrija, aplikacije pri slabijem osvjetljenju, digitalne fotografije, robotika i strojni vid. CMOS senzor na istom čipu može integrirati različite sklopove kao što su pojačala, ADC, sklopovi za obradu boja koji služe za obradu signala i slike [17].

Istraživanje i razvojem CMOS senzora razina šuma je uvelike smanjena, poboljšan je dinamički raspon što im omogućuje snimanje slika s većim kontrastom te je poboljšana i (mjera) sposobnosti senzora da pretvori svjetlost u električne signale (kvantna učinkovitost), što je dovelo do toga da su CMOS senzori učinkovitiji i osjetljiviji na svjetlost [15].

1.2.2 Tehnološke karakteristike C-luka

C-luk ima matricu slike na monitoru 320x320 piksela, te 16 bitnu razlučivost razina nijansi sive skale, tj. 65536 nijansi sive skale, a dimenzije CMOS ravnog detektora su 30 cm x 30 cm. Kao scintilator koristi se Cezijev jodid (CsI), a generator C-luka je 25 kW, rezolucija (FOV) 3072 x 3072 piksela (30,7 cm x 30,7 cm) [18].

1.3 PIKSEL

Piksel, element slike (engl. *Picture Element*) osnovni je element digitalne računalne slike. Ti su elementi oblika kvadrata koji predstavlja količinu sive skale razmješteni u pravilnu pravokutnu mrežu s odgovarajućim brojem redaka i stupaca. Širina slike određena je brojem stupaca dok je visina slike određena brojem redaka u matrici. Za identificiranje određenog piksela za njega definiramo koordinate x i y. Koordinatni sustav matrice slike je definiran tako da *x* raste od lijeva prema desno, a *y* od gore prema dolje. Što su elementi sitniji, a mreža gušća, slika će biti oštrija, a razlučivost bolja [19].

Piksel je najmanji grafički element slike. Grafički element kao pojam podrazumijeva element koji se može obrađivati tj. pridodati mu boju, odnosno raspon sive boje. Piksel je dvodimenzionalni element slike, dok voksel predstavlja trodimenzionalni element slike. Voxel se koristi u CT-u i u drugim modalitetima snimanja presjeka tj. slojeva [20]. Najmanji volumen pregledavanog dijela tijela je voxel (volumni element slike). On predstavlja vrijednost u trodimenzionalnom prostoru koji odgovara pikselu za određenu debljinu presjeka.

1.4 BIT

Količina informacija u pojedinom pikselu označena je bitom. Bit je najmanja jedinica binarnog sustava koja predstavlja jedno od dva moguća stanja u binarnom sustavu (0 ili 1). Osim toga, postoji i dubina bita koja omogućuje kombiniranje većeg broja nijansi sive skale piksela, odnosno što je veći broj bitova, ujedno je veći i broj kombinacija, a pri tome se dobiva više nijansi sive skale [21].

Razine sive skale, koje svaki piksel može imati, određen je brojem bitova:

- 8-bitna razina $= 2^8 = 256$ nijansi sive skale
- 10-bitna razina = 2^{10} = 1024 nijansi sive skale
- 12-bitna razina = 2^{12} = 4096 nijansi sive skale
- 14-bitna razina = 2^{14} = 16384 nijansi sive skale
- 16-bitna razina = 2^{16} = 65536 nijansi sive skale

Dogovorna šifra bitova predstavlja određenu nijansu boje sive skale koja je onda osnovni element cjelokupne slike [3].

1.5 DUBINA BITA

Izraz dubina bita (bitmape) odnosi se na binarni raspon mogućih vrijednosti u sivim tonovima koje koristi analogno-digitalni pretvarač za prevođenje informacija o analognoj slici u digitalne vrijednosti, koje računalo obradi i prikazuje na monitoru. Za kvalitetniji opis slike neophodno je proširiti količinu podataka u jednom pikselu tj. treba se povećati dubina bitmape. Dubina bitmape izražava se brojem bita u pikselu [21].

Dubina bita analogno-digitalnog pretvarača određuje veličinu koraka sive skale, pri čemu veće dubine bita odgovaraju većem rasponu korisnih informacija o slici, odnosno većem rasponu nijansi sive skale. Dubina bita slike određuje koliko jedinstvenih boja dostupno za stvaranje slike (Slika 3). U radiografiji dubina bita će odrediti koliko mogućih nijansi postoji između čiste crne i čiste bijele.

Ove razine svjetline crne, bijele i sive kombinirane su u ono što čini sivu skalu ili raspon svjetline slike. Veći broj razina sive odgovara većoj dubini bita i mogućnosti točnog prikazivanja većeg dinamičkog raspona signala.

Slika 3. Dubina bita i siva skala Izvor: <u>https://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html</u>

1.6 MATRICA SLIKE

Slika je pravokutni raspored temeljnih elemenata koji se nazivaju pikseli. Pikseli su raspoređeni u stupcima i redcima. Broj piksela u okviru određene slike definira se pomoću rezolucije. Što je veći broj piksela, time je veća i rezolucija slike. Veličina matrice određuje veličinu piksela.

Pikseli se tako smještaju u pravilnu mrežu koju zovemo matriks. Tipičan broj piksela koji može stati u matriks je danas najčešće 512x 512 (262 144) [3].

1.7 HOUNSFIELDOV BROJ (HU)

Princip rada CT uređaja temelji se na uporabi rendgenskih zraka te mjerenjem razlike između emitiranih i apsorbiranih rendgenskih zraka kroz tijelo. Ta razlika se naziva atenuacija čija je vrijednost određena gustoćom tkiva. Kako različita tkiva imaju različitu gustoću, kreiraju se slike koje imaju različit intenzitet sive skale. Što je materijal gušći to je slika svjetlija. Vrijednost skale 0 predstavlja vodu, a -1000 skale predstavlja vrijednost zraka. Meka tkiva unutar tijela imaju manju gustoću te je zbog toga njihov prikaz tamniji. Kosti, koje imaju veću gustoću, prikazane su svjetlije (do 1000 za kosti, a 2000 za guste kosti i 3000 za metale). Jedinica Hounsfield nazvana je po Sir Godfreyu Hounsfieldu, dobitniku Nobelove nagrade za fiziologiju i medicinu 1979. godine [22].

Svakom tkivu pridružena je vrijednost sa Hounsfieldove skale koja je univerzalna za sve CT uređaje. Taj broj(skala) omogućava dosta precizno mjerenje atenuacije rendgenskih zraka prolaskom kroz određeni dio tijela i naziva se Hounsfieldov ili CT broj (Tablica 1) [22].

Element	HU Vrijednost
Zrak	-1000
Mast	-50 do -100
Voda	0
Meko Tkivo	30 do 80
Zgrušana Krv	60 do 90
Pluća	-400 do -600
Krv	40
Jetra	40 do 60
Bijela Tvar	-20 do -30
Tamna Tvar	-37 do -45
Kosti	400 do 1000 i više
Jodni Kontrast	100 do 500

Tablica 1. Prikaz CT jedinica tkiva u ljudskom tijelu [23]

2. CILJ RADA

Cilj ovog rada je korelacija sive skale na 3D C-luku i HU na CT-u.

Hipoteze istraživanja

H1 - ne postoji korelacija srednjih vrijednosti izmjerenih na područjima mjerenja na Cluku i CT-u.

H2 - ne postoji korelacija srednjih vrijednosti izmjerenih na područjima mjerenja na Cluku i CT- s različitim DICOM preglednicima.

3. ISPITANICI I METODE

Studija je provedena u Kliničkoj bolnici Merkur na Kliničkom zavodu za dijagnostiku i intervencijsku radiologiju, Zagreb te u Nacionalnoj memorijalnoj bolnici "dr. Juraj Njavro" na Odjelu za radiologiju u Vukovaru (Prilog 1 i Prilog 2).

Za dobivanje potrebnih mjernih vrijednosti skenirali smo CT fantom na dva radiološka uređaja. Mjerenje je izvršeno na 3D C luk-u i 64 slojnom CT uređaju.

Fantom koji se koristio je kalibracijski fantom za CT uređaj. Sastoji od seta koji kombinira vodu, debljinu sloja, žicu i fantom za poravnanje.

Matrica korištena na CT uređaju je 512x512 sa veličinom pixela od 0,58 x 0,58. Na CTu je prikaz 12 bitne rezolucija sive skale.

Matrica na C luku je 320x320 i 16 bitna rezolucija sive skale sa veličinom piksela 0.50 x 0.50.

3.1 MATERIJAL I METODE

Rezultati će se dobiti skeniranjem CT fantoma na CT-u i 3D C-luku. Prikazane su mjerene vrijednosti i pomoću njih izračunate korelacije između HU i GSV. Studije s kojima su uspoređivani način rada i dobiveni rezultati u korelaciji sive skale i HU koristili su CBCT uređaj (siva skala) i CT uređaj (HU).

U ovom istraživanju korišten je MSCT uređaj Siemens Somatom Perspective, Erlangen, Germany te radiološki 3D C-luk Ziehm Vision RFD 3D, Nuerburg, Germany. Mjerni uređaj je bio standardizirani CT fantom koji dolazi kao osnovna oprema s CT uređajem.

Korištena su dva DICOM (engl. *Digital Imaging and Communication in Medicine*) preglednika tj. softvera za usporedno mjerenje:

1. Onis 2.5 Free Edition (DigitalCore, Co. Ltd, Tokyo, Japan)

2. RadiAnt DICOM Viewer (licenca na 30 dana), (Medixant, Poznan, Poland)

Površina mjerenja, ROI (engl. *Region of Interest*) bila je u veličini cca 1 cm². Mjerenja preuzeta iz DICOM metapodataka:

1. Area

- 2. Min
- 3. Max
- 4. Mean (srednja vrijednost)
- 5. Standard deviation
- 6. Broj piksela na x i y koordinati slike

Za upravljanje svim podacima i statističke analize korišteni su:

1. MS Excel (Microsoft Office 365, Microsoft, Redmond, WA) i

2. MedCalc Statistical Software verzija 14.8.1 (MedCalc Software bvba, Ostend, Belgija).

3.1.1 Fantom

Fantom upotrebljavamo u medicinskom snimanju za kontrolu kvaliteta, kalibraciju radioloških uređaja, dozimetriju i obrazovanje.

Postoje dvije glavne vrste fantoma:

- 1. Antropomorfni
- 2. Kalibracijski fantom

Antropomorfni fantomi napravljeni su od materijala koji imaju slične karakteristike tkiva bioloških organizama i simuliraju pacijente. Koriste se za procjenu optimalne upotrebe zračenja, novim protokolima snimanja ili tehnikama rekonstrukcije slike. Koriste se i kod edukacije zdravstvenih djelatnika različitim tehnikama snimanja ili čimbenicima izloženosti zračenju.

Kalibracijski fantom se sastoji od ispitnih modula s gustoćama već poznatih vrijednosti smještenih unutar cilindrično ili pločasto oblikovanog spremnika [24].

U ovom istraživanju korišten je CT fantom za kontrolu kvalitete koji je cilindričnog oblika i sastoji se od četiri područja koja predstavljaju [25]:

- 1. Vodu
- 2. Debljinu sloja
- 3. Rezoluciju
- 4. Fantom za poravnanje

Na Fantomu se nalazi nosač pomoću kojeg se može montirati na držač CT stola ili na adekvatno postolje. Na njemu se nalaze ugravirane oznake (križići) za lakše i preciznije pozicioniranje pomoću svjetlosnog markera-laser (Slika 4 i 5).

Slika 4. Fantom kontrole kvalitete za CT uređaj Izvor: Korisnička uputa za upotrebu CT uređaja

Slika 5. CT fantom koji se koristio za istraživanje Izvor: autor

3.1.2 C-luk i nosač fantoma

Uređaj koji se koristio za dobivanje vrijednosti sive skale je radiološki 3D C-luk Ziehm Vision RFD (Slika 6). Držač fantoma za snimanje na C-luku napravljen je po ideji mentora i autora diplomskog rada.

Slika 6. 3D C-luk Ziehm Vision RFD i nosača fantoma koji se koristio za istraživanje Izvor:autor

3.1.3 CT uređaj

Za prikaz vrijednosti HU na kalibracijskom fantomu korišten je CT uređaj Siemens Somatom Perspective, Erlangen, Germany (Slika 7).

Slika 7. CT uređaj Siemens Somatom Perspective koji se koristio u istraživanju Izvor: autor

3.2 METODE RADA

Istraživanje je provedeno u Nacionalnoj memorijalnoj bolnici Vukovar skeniranjem fantoma na CT uređaju s zadanim parametrima snimanja. Predmetni fantom skeniran je u KB Merkur u Zagrebu na C-luku također sa zadanim parametrima snimanja. To je i ujedno i bila prva faza od ukupno tri faze istraživanja.

U prvoj fazi istraživanja pozicioniran je fantom koji mora biti u vertikalnom položaju, a pozicijskim svjetlosnim markerom se odredio početni položaj i visina fantoma na točno

određenim mjestima na fantomu. Fantom se skenira u aksijalnom načinu rada s tim da ravnina skeniranja treba biti postavljena po sredini fantoma. Fantom smo postavili na CT uređaj te je skeniran sa najčešće korištenim protokolom za glavu sa vrijednostima od 80 kV i 110 kV. Također je isti fantom postavljen vertikalno pomoću posebno napravljenog nosača i sniman C lukom sa 3D opcijom snimanja. Na C-luku su korištene vrijednosti snimanja od 80 kV i 115 kV. Dobivene slikovne prikazane u DICOM formatu prebačene su u sustav za arhiviranje slika i komunikaciju podacima koji se naziva PACS (engl. *Picture Archiving and Communication System*). DICOM snimke su putem PACS sustava arhivirane na DVD i USB medij koje su putem osobnog računala prenesene u DICOM preglednike Onis 2.5 Free Edition i RadiAnt DICOM Viewer.

U drugoj fazi istraživanja, rezultate tj. slike su analizirane u DICOM preglednicima pomoću kojih se na točno određenim slojevima i mjestu izmjerena srednja vrijednost, standardna devijacija, vrijednost medijana sa minimalnim i maksimalnim vrijednostima, veličina područja mjerenja, koordinate i vrijednosti pixela te sloj i serija na kojoj se izvršilo mjerenje. Dobiveni rezultati uneseni su u preglednu MS Excel tablicu s navedenim podacima. Učinjene su snimke zaslona mjesta i načina mjerenja u određenim slojevima i područjima od interesa (Slike 8-10).

Prikazana područja mjerenja označene sa velikim slovo P i pripadajućim rednim brojem:

- P 1 područje fantoma sa vodom
- P 2 područje fantoma sa vodom
- P 3 područje fantoma debljina sloja
- P 4 područje fantoma debljina sloja
- P 5 područje fantoma rezolucija
- P 6 područje fantoma rezolucija
- P 7 područje fantoma poravnavanje
- P 8 područje fantoma poravnavanje

Veličina polja mjerenja (ROI) otprilike je oko 1 cm². Mjerenje u oba DICOM preglednika napravljena su na istim slikama dobivenih slojeva.

U trećoj fazi istraživanja uneseni rezultati u MS Excel tablicu upotrjebljeni su za obradu podataka pomoću statističkog programa MedCalc Statistical Software. Podatci koji su se

unosili u statistički program su srednja vrijednost, standardna devijacija, vrijednost medijana sa minimalnim i maksimalnim vrijednostima.

Za prikaz odnosa dobivenih mjernih rezultata korišten je Pearsonov koeficijent korelacije te su dobiveni rezultati prikazani u tablici i na dijagramu raspršenja (scatter dijagram). Korelacija (Pearson) srednjih vrijednosti područja mjerenja (P1 – P8) s različitim vrijednostima kV na C- luku i CT te različitim DICOM preglednicima prikazani su putem statističkih testova. Prikaz rezultata statističkih mjerenja su koeficijent korelacije, razine značaja (P) i broj područja mjerenja (N).

Studije s kojima su uspoređivani način rada i dobiveni rezultati u korelaciji sive skale i HU koristili su CBCT uređaj (GSV) i CT uređaj (HU).

3.2.1 Karakteristike slike iz DICOM datoteke

DICOM datoteke sadrže metapodatke koji pružaju informacije o slikovnim podacima, kao što su veličina slike, dimenzije, dubina bita, korišten modalitet, uređaj i parametri korištenog uređaja za snimanje. Istraživanje je temeljeno na DICOM slici i DICOM podatcima. Pod tagom Rows i Columns označena je rezolucija slike. Bit stored označava pohranjenu dubinu bitmape, a Largest Image pixel Value označava najveću dubinu polutonova po pikselu.

Prikaz ROI-a za CT i C-luk na određenom sloju skeniranog fantoma iz kojeg smo preuzeli gore navedene mjerne podatke iz preglednika Onis 2.5 (slika 8a i 9a).

DICOM informacije slike mjerenog područja za CT snimanje i snimanje na C-luku su preuzete iz programa Onis 2.5 (Tablica 2) (Slika 8b i 9b).

	СТ			C luk	
DICOM tag	Naziv	Vrijednost	DICOM tag	Naziv	Vrijednost
[0028:0010]	Rows	512	[0028:0010]	Rows	320
[0028:0011]	Columns	512	[0028:0011]	Columns	320
[0028:0101]	Bit stored	12	[0028:0101]	Bit stored	16
[0028:0107]	Largest Image	1175	[0028:0107]	Largest Image	65535
	Pixel Value			Pixel Value	

Tablica 2. DICOM informacija slike sa CT i C-luka u programu Onis 2.5

Prikaz ROI-a za CT i C-luk na određenom sloju skeniranog fantoma iz kojeg smo preuzeli gore navedene mjerne podatke iz preglednika RadiAnt (slika 10a i 11a).

DICOM informacije slike mjerenog područja za CT snimanje i snimanje na C-luku su preuzete iz programa RadiAnt (Tablica 3) (Slika 10b i 11b).

	СТ			C luk	
DICOM tag	Naziv	Vrijednost	DICOM tag	Naziv	Vrijednost
[0028:0010]	Rows	512	[0028:0010]	Rows	320
[0028:0011]	Columns	512	[0028:0011]	Columns	320
[0028:0101]	Bit stored	12	[0028:0101]	Bit stored	16
[0028:0107]	Largest Image	1174	[0028:0107]	Largest Image	65535
	Pixel Value			Pixel Value	

Tablica 3. DICOM informacija slike sa CT i C-luka u programu RadiAnt

	All existing tags	[Group,Element]	Title	Value	
0002]	File Meta Elements	[0028:0002]	Samples per Pixel	1	
0008]	Study information	[0028:0004]	Photometric Interpretation	MONOCHROME2	
0009]	Private	[0028:0010]	Rows	512	
0010]	Patient	[0028:0011]	Columns	512	
0018]	Acquisition Group	[0028:0030]	Pixel Spacing	0.5859375\0.5859375	
0019]	Private	[0028:0100]	Bits Allocated	16	
0020]	Relationship Group	[0028:0101]	Bits Stored	12	
0021]	Private	[0028:0102]	High Bit	11	
0028]	Image presentation	[0028:0103]	Pixel Representation	0	
0029]	Private	[0028:0106]	Smallest Image Pixel Value	0	
0032]	Study Schedule Group	[0028:0107]	Largest Image Pixel Value	1175	
0040]		[0028:1050]	Window Center	35\700	
FFFC]	Data Set	[0028:1051]	Window Width	80\3200	
		[0028:1052]	Rescale Intercept	-1024	
		[0028:1053]	Rescale Slope	1	
		[0028:1055]	Window Center Width Explanatio	WINDOW1\WINDOW2	
				· · · · · · · · · · · · · · · · · · ·	
					Clos
			01-		1
			80		

Slika 8a i 8b. Primjer mjerenja HU u programu ONIS, DICOM informacije slike mjerenog područja Izvor:autor

	All existing tags	[Group,Element]	Title	Value
[0002]	File Meta Elements	[0028:0002]	Samples per Pixel	1
[0008]	Study information	[0028:0004]	Photometric Interpretation	MONOCHROME2
[0010]	Patient	[0028:0008]	Number of Frames	1
[0018]	Acquisition Group	[0028:0010]	Rows	320
[0019]	Private	[0028:0011]	Columns	320
[0020]	Relationship Group	[0028:0030]	Pixel Spacing	0.625000\0.625000
[0021]	Private	[0028:0100]	Bits Allocated	16
[0028]	Image presentation	[0028:0101]	Bits Stored	16
[0029]	Private	[0028:0102]	High Bit	15
[0040]		[0028:0103]	Pixel Representation	0
[2050]		[0028:0106]	Smallest Image Pixel Value	0
[2100]		[0028:0107]	Largest Image Pixel Value	65535
		[0028:0301]	Burned In Annotation	NO
		[0028:1050]	Window Center	625
		[0028:1051]	Window Width	2750
		[0028:1052]	Rescale Intercept	-2000
		[0028:1053]	Rescale Slope	0.25
		[0028:1054]	Rescale Type	US
		[0028:1055]	Window Center _Width Explanatio	[C-W/2; C+W/2] -> [0; 1024]. {x y=(1024/W)(x-C+W/2)}
		[0028:2110]	Lossy Image Compression	00
				·
				Clo

Slika 9a i 9b. Primjer mjerenja GSV u programu ONIS, DICOM informacije slike mjerenog područja Izvor:autor

ag ID	VR	VM	Length	Description	Value
0020.0052)	UI	1	56	Frame of Reference UID	1.3.12.2.1107.5.1.4.78307.30000024031807150606100005372
0020,1040)	LO	0	0	Position Reference Indicator	
0020,1041)	DS	1	6	Slice Location	135.9
0020,4000)	LT	0	0	Image Comments	
0021.0010)	LO	1	12	Private Creator	SIEMENS MED
0021.1011)	DS	2	4		010
0028.0002)	US	1	2	Samples per Pixel	1
0028.0004)	CS	1	12	Photometric Interpretation	MONOCHROME2
0028.0010)	US	1	2	Rows	512
0028,0011)	US	1	2	Columns	512
0028,0030)	DS	2	20	Pixel Spacing	0.5859375\0.5859375
0028,0100)	US	1	2	Bits Allocated	16
0028,0101)	US	1	2	Bits Stored	12
0028.0102)	US	1	2	High Bit	11
0028.0103)	US	1	2	Pixel Representation	0
0028.0106)	US	1	2	Smallest Image Pixel Value	0
0028.0107)	US	1	2	Largest Image Pixel Value	1452
0028,1050)	DS	2	6	Window Center	35\700
0028,1051)	DS	2	8	Window Width	80\3200
0028, 1052)	DS	1	6	Rescale Intercept	-1024
028, 1053)	DS	1	2	Rescale Slope	1
028,1055)	LO	2	16	Window Center & Width Explanation	WINDOW1\WINDOW2
0029.0010)	10	1	18	Private Creator	STEMENS CSA HEADER
0029.0011)	10	1	22	Private Creator	STEMENS MEDCOM HEADER
0029,1008)	CS	1	6		SOM 5
029,1009)	LO	1	12		VA10A 971201
029,1010)	OB	1	734		00 00 04 00 4C 54 0A 00 35 00 30 00 34 00 35 00 33 00 00 00 05 00 46 44 08
029,1140)	so	0	0		
(FFFE,E000)		1	120	Item	
(0029.0010)	LO	1	22	Private Creator	SIEMENS MEDCOM HEADER
(0029, 1041)	CS	1	10		SOM 5 TPOS
(0029, 1042)	LO	1	18		SOM 5 NULLPOSITION
(0029, 1043)	LO	1	14		VB10A 20030626
(0029, 1044)	OB	1	12		2D 30 30 30 30 30 34 36 35 37 00 41
(FFFF.F00D)		0	0	Item Delimitation Item	
FFFE,EODD)		0	0	Sequence Delimitation Item	
1032,1060)	10	1	28	Requested Procedure Description	Head 01 Head STD SEO (Adult)
1040.0260)	50	0	0	Performed Protocol Code Sequence	
nd text					Close

Slika 10 a i 10 b. Primjer mjerenja HU u programu RadiAnt, DICOM informacije slike mjerenog

područja

Izvor:autor

	VR	٧M	Length	Description	Value
0020,0013)	IS	1	2	Instance Number	99
0020,0020)	CS	1	4	Patient Orientation	R/P
0020,0032)	DS	3	14	Image Position (Patient)	0\0\110.000000
0020,0037)	DS	6	12	Image Orientation (Patient)	-1\0\0\0\1\0
0020,0052)	UI	1	54	Frame of Reference UID	2.16.840.1.113669.632.6.1.21816.1704634837.110765.1065
0020,1040)	LO	0	0	Position Reference Indicator	
0020,1041)	DS	1	10	Slice Location	110.000000
(0020,4000)	LT	0	0	Image Comments	
(0021,0010)	LO	1	10	Private Creator	ZIEHM_1.0
(0021,1000)	OW	1	131072		
(0021,1001)	LT	0	0		
(0021,1002)	LO	1	12		ZIEHM_DICOM
(0028,0002)	US	1	2	Samples per Pixel	1
(0028,0004)	CS	1	12	Photometric Interpretation	MONOCHROME2
(0028,0008)	IS	1	2	Number of Frames	1
(0028,0010)	US	1	2	Rows	320
(0028,0011)	US	1	2	Columns	320
(0028,0030)	DS	2	18	Pixel Spacing	0.500000\0.500000
(0028.0100)	US	1	2	Bits Allocated	16
(0028,0101)	US	1	2	Bits Stored	16
(0028,0102)	US	1	2	High Bit	15
(0028.0103)	US	1	2	Pixel Representation	0
(0028,0106)	US	1	2	Smallest Image Pixel Value	0
(0028,0107)	US	1	2	Largest Image Pixel Value	65535
(0028,0301)	CS	1	2	Burned In Annotation	NO
(0028, 1050)	DS	1	4	Window Center	625
(0028,1051)	DS	1	4	Window Width	2750
(0028, 1052)	DS	1	6	Rescale Intercept	-2000
(0028, 1053)	DS	1	4	Rescale Slope	0.25
(0028, 1054)	LO	1	2	Rescale Type	US
(0028, 1055)	LO	1	54	Window Center & Width Explanation	[C-W/2; C+W/2] -> [0; 1024]. {x y=(1024/W)(x-C+W/2)}
(0028.2110)	CS	1	2	Lossy Image Compression	00
(0029.0010)	LO	1	10	Private Creator	ZIEHM 1.0
	10	0	0	Private Creator	-

Slika 11a i 11b. Primjer mjerenja GSV u programu RadiAnt, DICOM informacije slike mjerenog područja

Izvor:autor

3.3 STATISTIČKA OBRADA REZULTATA

Za upravljanje svim podacima i statističke analize korišteni su MS Excel (Microsoft Office 365, Microsoft, Redmond, WA) i MedCalc Statistical Software verzija 14.8.1 (MedCalc Software bvba, Ostend, Belgija).

Pearsonovim koeficijentom korelacije prikazan je odnos dobivenih mjernih rezultata. Razina statističke značajnosti postavljena je na P<0,05.

3.3.1 Koeficijent korelacije

Koeficijent korelacije – pokazatelj koliko su promjene vrijednosti jedne statističke varijable povezane s promjenama vrijednosti druge statističke varijable.

Pearsonov koeficijent linearne korelacije (znak "r" - po Karlu Pearsonu) mjeri jakost i smjer linearne korelacije, tj. vjerojatnost da vrijednosti jedne statističke varijable odgovara određena vrijednost druge statističke varijable pri izravnoj ili recipročnoj razmjernosti. Vrijednost i opis koeficijenta korelacije prikazan je u tablici 4 [26].

Vrijednost koeficijenta	Opis korelacije
-1	potpuna i negativna
od –1 do –0,75	vrlo dobra do izvrsna i negativna
od -0,75 do -0,50	umjerena i negativna
od -0,50 do -0,25	slaba i negativna
od -0,25 do 0	neznatna i negativna
od 0	nema korelacije
od 0 do 0,25	neznatna i pozitivna
od 0,25 do 0,50	slaba i pozitivna
od 0,50 do 0,75	umjerena i pozitivna
od 0,75 do 1	vrlo dobra do izvrsna i pozitivna
+1	potpuna i pozitivna

Tablica 4. Prikaz vrijednosti koeficijenta i opisa korelacije [26]

Odnos između dvije varijable prikazujemo grafički pomoću grafa koji nazivamo dijagram raspršenja (scatter dijagram). Dijagram se sastoji od x osi na kojoj je prikazana vrijednost jedne varijable i y osi dijagrama na kojoj je prikazana druga vrijednost varijable.

Korelacija je mjera zajedničke veze između dvije varijable koja može biti pozitivna, negativna ili je nema.

Pozitivna korelacija - kada vrijednost jedne varijable raste, raste i vrijednost druge varijable. Isto tako kada jedna vrijednost varijable pada, pada i vrijednost druge varijable (pozitivno korelirane).

Negativna korelacija- kada vrijednost jedne varijable raste, a vrijednost druge varijable pada [27].

4. REZULTATI

Obradom i analizom dobivenih podataka uslijedilo je tumačenje statističkih dobivenih rezultata istraživanja. Rezultate smo prikazali tablicom i grafičkim prikazom (plot dijagram).

Prikaz deskriptivne statistike, koja uključuje srednje vrijednosti GSV-a, razine značajnosti, standardne devijacije te vrijednost medijana sa minimalnim i maksimalnim vrijednostima na CT-u i C-luku za različitim naponima rtg cijev u dva DICOM preglednika prikazane su u tablici 5.

Tablica 5. Deskriptivna statistika srednje vrijednosti sive skale i HU jedinica na različitim područjima mjerenja (P1 – P8) s različitim vrijednostima kV na C-luku i CT te različitim DICOM preglednicima

	Mean	95% CI	SD	Median	95% CI	Min.	Max.
Onis C-luk GSV 115kV Mean	233,892	8,337 - 459,448	269,7969	196,715	-16,813 - 565,300	-26,250	569,540
RadiAnt C-luk GSV 115kV Mean	227,914	-1,308 - 457,137	274,1825	193,628	-25,830 - 559,994	-45,150	566,610
Onis CT HU 110kV Mean	57,819	10,678 - 104,959	56,3868	59,185	-2,548 - 115,762	-2,970	116,330
RadiAnt CT HU 110kV Mean	58,223	11,520 - 104,926	55,8637	59,445	-1,716 - 115,804	-1,812	116,290
Onis C-luk GSV 80kV Mean	183,121	-56,747 - 422,989	286,9162	31,360	-8,367 - 635,348	-10,240	650,890
RadiAnt C-luk GSV 80kV Mean	185,768	-55,739 - 427,276	288,8771	35,570	-12,827 - 638,358	-14,140	658,480
Onis CT HU 80kV Mean	46,360	5,243 - 87,477	49,1817	45,835	-2,019 - 95,928	-3,770	96,050
RadiAnt CT HU 80kV Mean	46,311	5,107 - 87,515	49,2859	46,054	-2,899 - 95,995	-3,682	96,190

	RadiAnt CT HU 80kV Mean	0,171 0,6855 8	0,176 0,6766 8	0,998 <0,0001 8	0,998 <0,0001 8	0,450 0,2632 8	0,438 0,2779 8	1,000 <0,0001 8		
	Onis CT HU 80kV Mean	0,169 0,6897 8	0,174 0,6810 8	0,998 <0,0001 8	0,998 <0,0001 8	0,450 0,2630 8	0,438 0,2778 8		1,000 <0,0001 8	
	RadiAnt C-luk GSV 80kV Mean	0,844 0,0085 8	0,836 0,0098 8	0,422 0,2978 8	0,420 0,2999 8	1,000 <0,0001 8		0,438 0,2778 8	0,438 0,2779 8	
	Onis C-luk GSV 80kV Mean	0,838 0,0093 8	0,831 0,0106 8	0,434 0,2827 8	0,432 0,2847 8		1,000 <0,0001 8	0,450 0,2630 8	0,450 0,2632 8	
	RadiAnt CT HU 110kV Mean	0,184 0,6635 8	0,190 0,6525 8	1,000 <0,0001 8		0,432 0,2847 8	0,420 0,2999 8	0,998 <0,0001 8	0,998 <0,0001 8	
	Onis CT HU 110kV Mean	0,185 0,6608 8	0,191 0,6499 8		1,000 <0,0001 8	0,434 0,2827 8	0,422 0,2978 8	0,998 <0,0001 8	0,998 <0,0001 8	
	RadiAnt C-luk GSV 115kV Mean	1,000 <0,0001 8		$0,191 \\ 0,6499 \\ 8$	0,190 0,6525 8	0,831 0,0106 8	0,836 0,0098 8	0,174 0,6810 8	0,176 0,6766 8	
	Onis C-luk GSV 115kV Mean		1,000 <0,0001 8	0,185 0,6608 8	0,184 0,6635 8	0,838 0,0093 8	0,844 0,0085 8	0,169 0,6897 8	0,171 0,6855 8	
		Correlation Coefficient Significance Level P N	rrelation coefficient							
preglednicima		Onis C-luk GSV 115kV Mean	RadiAnt C-luk GSV 115kV Mean	Onis CT HU 110kV Mean	RadiAnt CT HU 110kV Mean	Onis C-luk GSV 80kV Mean	RadiAnt C-luk GSV 80kV Mean	Onis CT HU 80kV Mean	RadiAnt CT HU 80kV Mean	Pearson co

Tablica 6. Korelacija (Pearson) srednjih vrijednosti područja mjerenja (P1 - P8) s različitim vrijednostima kV na C-luku i CT te različitim DICOM

U tablici 6 prikazane su vrijednosti koeficijenta korelacije između C-luka i CT-a sa naponom rtg cijevi od 80 kV na CT-u i 80 kV na C-luku te sa vrijednostima napona rtg cijevi od 115 kV na C-luku i 110 kV na CT-u.

Dijagrami kumulativne frekvencije za srednje vrijednosti područja mjerenja (P1 – P8) s različitim vrijednostima kV na C-luku i CT te različitim DICOM preglednicima. Grafovi prikazuju eksponencijalnu povezanost između HU i GSV.

Na slici 12. prikazana je distribucija frekvencije srednjih vrijednosti GSV na C-luku pri parametrima snimanja fantoma od 115 kV. Mjerenja podataka su izvršena u Onis DICOM pregledniku. Na slici 13. prikazana je distribucija frekvencije srednjih vrijednosti HU na CT- u pri parametrima snimanja fantoma od 110 kV. Mjerenja podataka su izvršena u Onis DICOM pregledniku.

Slika 12. Grafički prikaz distribucije frekvencija srednjih vrijednosti C-luk, 115 kV, Onis DICOM preglednik

Slika 13. Grafički prikaz distribucije frekvencija srednjih vrijednosti CT, 110 kV Onis DICOM preglednik

Na slici 14. prikazana je distribucija frekvencije srednjih vrijednosti GV na C-luku pri parametrima snimanja fantoma od 115 kV. Mjerenja podataka su izvršena u RadiAnt DICOM pregledniku.

Na slici 15. prikazana je distribucija frekvencije srednjih vrijednosti HU na CT-u pri parametrima snimanja fantoma od 110 kV. Mjerenja podataka su izvršena u RadiAnt DICOM pregledniku.

Slika 14. Grafički prikaz distribucije frekvencija srednjih vrijednosti C-luk, 115 kV, RadiAnt DICOM preglednik

Slika 15. Grafički prikaz distribucije frekvencija srednjih vrijednosti CT, 110 kV, RadiAnt DICOM preglednik

Na slici 16. prikazana je distribucija frekvencije srednjih vrijednosti GSV na C-luku pri parametrima snimanja fantoma od 80 kV. Mjerenja podataka su izvršena u Onis DICOM pregledniku.

Na slici 17. prikazana je distribucija frekvencije srednjih vrijednosti HU na CT-u pri parametrima snimanja fantoma od 80 kV. Mjerenja podataka su izvršena u Onis DICOM pregledniku.

Slika 16. Grafički prikaz distribucije frekvencija srednjih vrijednosti C-luk, 80 kV Onis DICOM preglednik

Slika 17. Grafički prikaz distribucije frekvencija srednjih vrijednosti CT, 80 kV Onis DICOM preglednik

Na slici 18. prikazana je distribucija frekvencije srednjih vrijednosti GSV na C-luku pri parametrima snimanja fantoma od 80 kV. Mjerenja podataka su izvršena u RadiAnt DICIM pregledniku.

Na slici 19. prikazana je distribucija frekvencije srednjih vrijednosti HU na CT-u pri parametrima snimanja fantoma od 80 kV. Mjerenja podataka su izvršena u RadiAnt DICOM pregledniku.

Slika 18. Grafički prikaz distribucije frekvencija srednjih vrijednosti C-luk, 80 kV RadiAnt DICOM preglednik

Slika 19. Grafički prikaz distribucije frekvencija srednjih vrijednosti CT, 80 kV RadiAnt DICOM preglednik

Rezultati dobiveni obradom podataka pomoću statističkog programa MedCalc Statistical Software pokazuju da izmjerena i prikazana vrijednost koeficijenta korelacije (r) r=0,185 između C-luka 115 kV i CT-a 110 kV opisuje se kao r = neznatna i pozitivna.

Slaba i pozitivna korelacija (r = 0,450) izmjerena je i prikazana između CT-a i C-luka sa snagom cijevi na oba uređaja od 80 kV. Slaba i pozitivna korelacija (r = 0,434) dobivena

je mjerenjem između CT-a 110 kV i C-luka 80 kV. (Podatci korišteni iz Onis DICOM programa).

5. RASPRAVA

Prema saznanjima mentora i autora ovog rada, ovo je prvi primjer istraživanja korelacije HU i GSV na CT-u i 3D C-luku na CT fantomu. C-luk kao uređaj koji se najviše koristi u operacionim sala kao vodič tj. "oči" tijekom operativnog zahvata i koja mu je to osnovna primjena u većini slučajeva, mogao bi biti koristan i kao opcija za postoperativno snimanje za dijagnostičku interpretaciju dobivenih snimaka GSV-a u usporedbi sa vrijednostima HU na CT uređaju. Uređaj ima veliki potencijal i primjenu zbog svoje mobilnosti i korištenja van zadanih okvira radiološke dijagnostike. Dokazivanjem korelacije GSV-a na C-luku i HU CTa njegova primjena bi se mogla upotrijebiti i u forenzičke svrhe. Usporednim mjerenjem u oba DICOM programa dobivene su vrijednosti koje su iste ili sa vrlo malim odstupanjima koje ostaju u rangu stupnja koeficijenta korelacije. Na grafovima prikazana distribucija frekvencije C-luka i CT-a ukazuju na sličnu distribuciju što dokazuje moguću povezanost sa HU i GSV. Zbog sličnosti u distribuciji potrebno je napraviti daljnje istraživanje u tom području.

Pregledom literature i navedenih radova može se vidjeti da postoji povezanost između GSV CBCT-a i HU na CT-u. Autori u radovima [1, 4, 5] navode da postoje određene tehničke stavke koje bi trebalo korigirati ili standardizirati zbog mogućeg utjecaja na korelaciju između GSV i HU.

Pretraživanjem literature našlo se radova slične tematike gdje su autori uspoređivali HU i GSV ali na CBCT-u i CT uređaju.

Jedan od radova gdje Selvaraj A. i suradnici [4] navode kako je njihov rad prvi sustavni pregled koji istražuje postojeću literaturu o korelaciji između GV-a CBCT-a i HU-a CT-u. Taj pregled je uključivao svu dostupnu literaturu i studije na životinjama od rujna 2021. Nakon pregleda naslova od 5645 članaka izdvojili su 27 studija. Kvalitativnoj analizi podvrgnuto je 14 studija, u kojima su rezultati pokazali dobru korelaciju između GV-a

CBCT-a i HU-a CT-a. Oprema koja se koristila u uključenim studijama zbog geometrije snimanja je varirala ali ipak većina uključenih studija pokazala je da postoji jaka korelacija između GV CBCT-a i HU CT-a. Navode kako različiti parametri napona cijevi, struja cijevi, veličina vidnog polja (FOV) i veličina voksela imaju utjecaj u rekonstrukciji slika GSV-a na CBCT-u što može utjecati na korelaciju GV i HU. Kod snimanja CBCT-om prikladno bi bilo uključiti automatsku kontrolu izloženosti kako bi se optimizirala doza za pacijenta i smanjila ručna pogreška u snimanju. Veličina voksela može utjecati na rezoluciju slike tijekom procjene. Manji vokseli daju veću rezoluciju slike ali isto tako mogu uzrokovati veći šum i zahtijevati veću dozu zračenja dok veći vokseli imaju manji šum ali mogu smanjiti sposobnost preciznog razlikovanja anatomskog prikaza. Još jedan od važnih čimbenika koji može imati utjecaja na korelaciju GV i HU identificiranje ROI-a na mjestu mjerenja koji može promijeniti GSV na CBCT-u [4].

U studiji gdje su Razi T. i suradnici [1] skenirali glavu ovce s 3 CBCT i jednim CT uređajem dobivene podatke analizirali su kako bi se istražio odnos između GSV CBCT-a i HU na CT-u. Autor objašnjava da fantomi koji su korišteni u prethodnim studijama uglavnom korišteni s gustoćama homogenih materijala ekvivalentnim tkivu kroz cijelu strukturu te da se rezultati ne mogu generalizirati na kliničke primjene s nehomogenim ljudskim tkivom. Korištena su 3 CBCT uređaj jer autor navodi kako GSV nisu iste u različitim uređajima. Iako postoje razlike između rezultat na navedena 3 uređaja nije bilo statističkih značajnih razlika u srednjim vrijednostima (means) sivih skala Do sada nije uveden standardni prikaz sive skale kod CBCT proizvođača uređaja. Rezultati u studiji su pokazali linearni odnos HU na CT-u i GSV na sva 3 CBCT-a [1].

Eguren M. i suradnici [5] su u svom sustavnom pregledu literature istraživali dostupne dokaze o sposobnosti pretvaranja GSV iz CBCT-a u HU u MDCT. Studije koje su uključili u ovaj sustavni pregled trebale bi pomoći odgovoriti na istraživačko pitanje prema PICO strategiji/shemi. Navode kako je za izračun HU-a potrebno kalibrirati skener prema apsorpciji RTG zračenja vode i zraka. Neophodno je i kalibrirati CBCT zbog određivanje odgovarajuće kilovoltažne energije. Nedostatak CBCT standardizacije i kalibracije otežavao je usporedbu relativnih vrijednosti HU-a dobivenih iz različitih skenera [5]. Selvaraj R. također u svom radu navodi isti problem oko standardizacije CBCT uređaja.[4]

Zbog nedostatka kliničkih studija dijagnostičke vrijednosti Eguren M. i suradnici u zaključku navode da se GSV iz CBCT ne mogu pretvoriti u HU-u. Dokazano ja da su "kalibracija opreme, korelacija, modeli jednadžbi predviđanja i standardna formula potrebni za dobivanje pseudo HU umjesto da se oni dobivaju samo iz modela jednadžbi i predviđanja ili izravno iz softvera"[5].

U studiji koju su proveli Mah P.[28] i suradnici korišteno je 11 različitih CBCT uređaja i 2 CT uređaja. Na navedenim uređajima skenirali su fantom koji sadrži 8 različitih materijala poznatog sastava i gustoće. Zbog prednosti samog CBCT uređaja u stomatologiji (niža doza zračenja, kraće vrijeme skeniranja, manja cijena uređaja) u odnosu na medicinski CT uređaj svrha njihove studije bila je istražiti odnos između GSV i linearnog koeficijenta atenuacije na CBCT uređajima uz dokazivanje može li se HU izračunati iz GSV-a. Za uspješno planiranje ugradnje implantata važna je procjena kvalitete tj. gustoće kosti uz dimenzije mjesta postavljanja implantata (visina i širina kosti) te odnosa između drugih anatomskih struktura (sinusa). Rezultat njihovog istraživanja potvrdilo je pretvaranje GSV na nekoliko CBCT uređaja. U zaključku su naveli kako se HU može izvesti iz GSV na CBCT uređajima pomoću linearnog koeficijenta atenuacije kao međukorak [28].

6. ZAKLJUČAK

Iako je statistički slaba korelacije izmjerenih srednjih vrijednosti na C-luku (siva skala) i CT-u (HU jedinice) r= 0,185, grafički prikazi distribucije frekvencija srednjih vrijednosti ukazuju na mogućnost daljnjih istraživanja i povezivanja HU jedinica s vrijednostima sive skale. Ovi rezultati su nedovoljni da bi se upotrijebili u validaciji GSV na C-luku i HU na CT-u.

Nakon dobivenih rezultata iz ovog istraživanja i pregledom dostupne literature može se reći da postoji veza između GSV-a i HU. Međutim zbog nedostatka literature koja istražuje GSV na C-luku i HU na CT-u nisu se mogli usporediti dobiveni rezultati ovog istraživanja.

U mogućem daljnjem istraživanju potrebno je osvrnuti se na preporuke i savjete autora radova koje imaju poveznice u validaciji GSV-a i HU sa ovim istraživanjem.

7. LITERATURA

- Razi T, Niknami M, Alavi Ghazani F. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. J Dent Res Dent Clin Dent Prospects. 2014 Spring;8(2):107-10. doi: 10.5681/joddd.2014.019. Epub 2014 Jun 11.
- Biber D. Digitalne radiološke metode [Završni rad]. Split: Sveučilište u Splitu; 2014 (pristupljeno 22.06.2024.) Dostupno na: <u>https://urn.nsk.hr/urn:nbn:hr:176:385877</u>
- Mihanović F. Računala u radiologiji, Sveučilišni odjel zdravstvenih studija. Split, 2023. Nastavni materijali, Power Point prezentacija
- Selvaraj A, Jain RK, Nagi R, Balasubramaniam A. Correlation between gray values of cone-beam computed tomograms and Hounsfield units of computed tomograms: A systematic review and meta-analysis. Imaging Sci Dent. 2022 Jun;52(2):133-140. doi: 10.5624/isd.20210274. Epub 2022 May 13.
- Eguren M, Holguin A, Diaz K, Vidalon J, Linan C, Pacheco-Pereira C, Lagravere Vich MO. Can gray values be converted to Hounsfield units? A systematic review. Dentomaxillofac Radiol. 2022 Jan 1;51(1):20210140. doi: 10.1259/dmfr.20210140. Epub 2021 Jun 19.
- NobelPrize.org. Nobel Prize Outreach AB 2024.(pristupljeno 1.9.2024.) Dostupno na: <u>https://www.nobelprize.org/prizes/medicine/1979/press-release/</u>
- Janković S, Mihanović F, Punda A, Radović D, Barić A, Hrepić D. Radiološki uređaji i oprema u radiologiji, radioterapiji i nuklearnoj medicini. Split: Sveučilište u Splitu; 2015
- 8. Semnic R, CT toraksa i abdomena, Sremska Kamenica: Institut za onkologiju, 2005.
- Terze Ž. CT-MSCT tehnološke sličnosti i razlike [Završni rad]. Split: Sveučilište u Splitu; 2017 (pristupljeno 21.06.2024.) Dostupno na: <u>https://urn.nsk.hr/urn:nbn:hr:176:657374</u>
- Ivančić R. Razlike u prostornoj rezoluciji kod uređaja koji se koriste za 3D snimanje orofacijalnog područja [Završni rad]. Split: Sveučilište u Splitu; 2016 (pristupljeno 22.06.2024.) Dostupno na: <u>https://urn.nsk.hr/urn:nbn:hr:176:050904</u>

- 11. Amazonaws.com:Comparison Chart/Siemens Computet Tomography (CT) System (pristupljeno 21.6.2024.) Dostupno na: https://s3.amazonaws.com/sgcimages/36_37_40_41_ITN1115_Siemens.pdf
- Rednam M, Tiwari V. Fluoroscopy Orthopedic Assessment, Protocols, and Interpretation. 2023 Aug 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 34424638
- 13. Hamamatsu.magnet.fsu.edu : Hamamatsu Learning Center: Electronic Imaging Detectors (pristupljeno 30.6. 2024.) Dostupno na: <u>https://hamamatsu.magnet.fsu.edu/articles/digitalimagingdetectors.html</u>
- 14. Edge ai vision.com: CMOS vs CCD: Why CMOS Sensors are Ruling the World of Embedded Vision (pristupljeno 10.6. 2024.). Dostupno na: <u>https://www.edge-ai-vision.com/2023/04/cmos-vs-ccd-why-cmos-sensors-are-ruling-the-world-of-embedded-vision/</u>
- Csenzor.com: CCD vs CMOS: A Review of Sensor Technology (pristupljeno 30.6.
 2024.). Dostupno na: <u>https://www.csensor.com/ccd-vs-cmos</u>
- Mihalec D. Usporedba vrsta digitalnih receptora slike u radiografiji orofacijalnog područja [Diplomski rad]. Split: Sveučilište u Splitu; 2022 (pristupljeno 26.06.2024.) Dostupno na: <u>https://urn.nsk.hr/urn:nbn:hr:176:121671</u>
- M. Bigas, E. Cabruja, J. Forest, J. Salvi, Review of CMOS image sensors, Microelectronics Journal, Volume 37, Issue 5, 2006, Pages 433-451, ISSN 1879-2391, <u>https://doi.org/10.1016/j.mejo.2005.07.002</u>. <u>https://www.sciencedirect.com/science/article/pii/S0026269205002764</u>
- 18. Ziehmimaging.com(2021).Product Portfolio (Pristupljeno 2.7.2024.) Dostupno na: https://www.ziehm.com/en/downloads/en-ziehm-imaging-product-portfolio.pdf/
- Slikovni element. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013. – 2024. (pristupljeno 2.7.2024.) Dostupno na: <u>https://www.enciklopedija.hr/clanak/slikovni-element</u>
- 20. Brogdon BG. The scope of forensic radiology. Clin Lab Med. 1998 Jun;18(2):203-40. doi: 10.1201/9781420048339.ch3. PMID: 9614585.

- 21. Concepts in Digital Imaging Technology; Basic Properties of Digital Images (pristupljeno 7. 5. 2024.) Dostupno na: <u>https://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html</u>
- 22. DenOtter TD, Schubert J. Hounsfield Unit. 2023 Mar 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 31613501
- 23. Čaćić D. Usporedba metoda predobrade slika za segmentaciju srčanih komora iz 2D CT slika pomoću U-Net konvolucijske neuronske mreže [Diplomski rad]. Osijek: Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek; 2023 (pristupljeno 21.06.2024.) Dostupno na: <u>https://urn.nsk.hr/urn:nbn:hr:200:715882</u>
- Hacking C, Baba Y, Bell D, et al. Fantom. Referentni članak, Radiopaedia.org (pristupljeno 11.5.2024.) <u>https://doi.org/10.53347/rID-73526</u>
- 25. Siemens Somatom Perspective; Priručnik Vlasnika CT.sustava NMB Vukovar
- 26. Koeficijent korelacije. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013. 2024. (pristupljeno 11.5.2024.) Dostupno na: https://www.enciklopedija.hr/clanak/koeficijent-korelacije
- 27. Ekonomska baza.hr (2022) Što je korelacija i zašto je važna (pristupljeno 13.5.2024) dostupno na: <u>https://ekonomskabaza.hr/statistika/sto-je-korelacija/</u>
- Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol. 2010 Sep;39(6):323-35. doi: 10.1259/dmfr/19603304.

8. ŽIVOTOPIS

Osobni podaci Ime i prezime: Branko Kovalisko Datum rođenja: 29.10.1975 Adresa: Nikle Andrića 28, 32000 Vukovar, Republika Hrvatska E-mail: b.kovalisko@gmail.com Obrazovanje: 1990-1994 Medicinski tehničar Zdravstveno - veterinarska škola "dr.Andrija Štampar" u Vinkovcima 1998-2000 Inženjer medicinske radiologije Visoka zdravstvena škola, Zagreb (Hrvatska) 2002-2003 razlikovna godina (po Bologni), Zdravstveno veleučilište, Mlinarska cesta 38, Zagreb (Hrvatska) prvostupnik medicinske radiologije bacc. radiološke tehnologije 2021-2024 Sveučilišni odjel zdravstvenih studija Split, Diplomski studij radiološka tehnologija Zaposlenja: 17/10/1994-12/05/1996 medicinski tehničar Opća županijska bolnica Vinkovci, Vinkovci (Hrvatska) 01/04/1997-01/09/1998 medicinski tehničar Opća županijska bolnica Vinkovci, Vinkovci (Hrvatska) Djelatnost - Odjel za duševne bolesti 02/09/1998-danas Inženjer medicinske radiologije (radiološki tehnolog) Nacionalna memorijalna bolnica "dr. Juraj Njavro", Vukovar (Hrvatska) Glavni ing. med. radiologije od 2004 do 2023 godine.

Dodatne informacije:

- dobre komunikacijske vještine
- poznavanje rada na računalu i u MS Office-u
- poznavanje rada u PACS-u i RIS sustavu
- poznavanje i aktivno korištenje u govoru i pisanju engleskog jezika

POPIS KRATICA

- ADC (engl. Analog Digital Converter) analogno digitalni pretvarač
- CBCT (engl. *Cone Beam Computed Tomography*) kompjutorizirane tomografije konusnim zrakama
- CCD (engl. Charge Coupled Device) nabojno spregnutim uređajima
- CMOS (engl. *Complementary Metal Oxide Semiconductor*) komplementarni metal oksidni poluvodič
- CT (engl. Computed Tomography) kompjuterizirana tomografija
- DICOM (engl. *Digital Imaging and Communication in Medicine*) Digitalna Slika i Komunikacija u Medicini
- GSV (engl. Gray Scale Value) nijanse sive skale
- HU (engl. Hounsfield Unit) Hounsfieldovih jedinica,
- MDCT (engl. *Multidetector Computed Tomography*) višedetektorska kompjuterizirana tomografija
- MSCT (eng. *Multislice Computed Tomography*)- višeslojna kompjuterizirana tomografija
- •
- PACS (engl. *Picture Archiving and Communication System*) sustav za arhiviranje slika i komunikaciju podacima
- ROI (engl. Region of Interest) područje interesa
- SR (eng. Spatial Resolution) prostorna rezolucija

PRILOG 1

T

Ĩ

Ē

Ē

I

Branko Kovalisko Nikole Andrića 28 32000 Vukovar Mob: 092 500 0057

Predmet: Dopuštenje za korištenje CT uređaja

Poštovani,

Suglasan sam da Branko Kovalisko, bacc.rad.tech. na Odjelu za radiologiju NMB "dr. Juraj Njavro" u Vukovaru koristi CT uređaj Somatom Perspective tvrtke Siemens u svrhu izrade Diplomskog rada na Sveučilišnom odjelu zdravstvenih studija u Splitu, smjer radiološka tehnologija. Tema Diplomskog rada je "Validacija sive skale na C luku u korelaciji sa HU na CT-u".

Vukovar , 25.09.2023

doc.dr.sc. Damir Štimac, dr. med. voditelj Odjela za radiologiju NMB "dr. Juraj Njavro" Vukovar

doc.dr.sc. Dam

Stimac, dr.mao

PRILOG 2

KLINIČKA BOLNICA MERKUR Klinički zavod za dijagnostičku i intervencijsku radiologiju Medicinski fakultet Sveučilišta u Zagrebu Zajčeva 19, 10 000 ZAGREB, Hrvatska Predstojnik: prof.dr.sc. Vinko Vidjak, dr.med.

CLINICAL HOSPITAL MERKUR Clinical Department of Diagnostic and Interventional Radiology School of Medicine University of Zagreb Zajčeva 19, 10 000 ZAGREB, Croatia Head: Prof. Vinko Vidjak, MD, PhD

www.kb-merkur.hr • Tel/fax: +385 1 2431413 • Email: radiologija@kb-merkur.hr

Zagreb , 21.11.2023

n/p Branko Kovalisko Nikole Andrića 28 32000 Vukovar

SUGLASNOST

Predmet: Zamolba za dopuštenje za korištenje C luka

Poštovani,

suglasan sam da se na Kliničkom zavodu za dijagnostičku i intervencijsku radiologiju Kliničke bolnice Merkur koristi intraoperativni C luk (Zihem) uz pomoć "fantoma", a sve u svrhu izrade Diplomskog rada na Sveučilišnom odjelu zdravstvenih studija u Splitu, smjer radiološka tehnologija.

Korištenje C luka će se provoditi isključivo uz prisustvo glavnog radiološkog tehnologa Krunoslava Marinčevića i/ili njegovog zamjenika radiološkog tehnologa Tomislava Mraka.

Tema Diplomskog rada je "Validacija sive skale na C luku u korelaciji sa HU na CT-u".

Predstojnik Kliničkog zavoda za dijagnostičku i intervencijsku radiologiju Prof.dr.sc. Vinkø Vidjak, dr.med.